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Derrida et al. and Schütz and Stinchcombe gave algebraic formulas for the cor-
relation functions of the partially asymmetric simple exclusion process. Here we
give a fairly general recipe of how to get these formulas and extend them to the
whole time evolution (starting from the generator of the process), for a certain
class of interacting systems. We then analyze the algebraic relations obtained to
show that the matrix approach does not work with some models such as the
voter and the contact processes.
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stationary non equilibrium states.

1. INTRODUCTION

A few years ago Derrida et al., (2, 3) suggested an intriguing ‘‘matrix
approach’’ to the one-dimensional Asymmetric Simple Exclusion Process
(ASEP). This approach has later been used to treat variants of the
model, (4, 7, 8) extended to non steady states and by Schütz et al., (12, 13, 16) used
to study fluctuations by Derrida et al. (5) and the multispecies case by
(among others) Isaev et al. (9).
The main aim of this paper is to study the difficulties that arise in

potential applications of the matrix approach to cases in which the nearest
neighbor interaction or the particle conservation (both present in the
ASEP) are violated. Further light on the applicability of the matrix method
is shed by the integrability criterion illustrated by Popkov et al. (16)



In Section 2 we provide a general recipe (using the generator of the
process) to find the algebra of the matrix formalism associated to both the
steady state and the whole dynamics of any one-dimensional interacting
system such that at each step the configuration changes only in two adja-
cent sites. A more complete description, with a pedagogical aim will be
given elsewhere. (6) In Section 3 we apply the recipe to some important
interacting systems such as the contact and voter models and show that the
matrix algebra obtained is not useful to treat them.
We will consider only systems in the lattice {1,..., N}, this is an intrin-

sic limitation of the matrix approach. The dynamics of an interacting par-
ticle system is usually defined by giving the generator of the process, the
general form of which can be found for instance in Liggett’s book. (10)

For example, the generator W of the ASEP, if particles jump one site
to the right (left) with rate p (q=1−p) and enter the lattice from the left
(right) at rate a (d) and leave it at rate c (b), is defined by: (10)

(Wf)(y)= C
N−1

x=1
[py(x)(1−y(x+1))+qy(x+1)(1−y(x))][f(yx, x+1)−f(y)]

+[a(1− y(1))+cy(1)][f(y1)−f(y)]

+[d(1− y(N))+by(N)][f(yN)−f(y)] (1)

where y={y(x)}Nx=1 is the configuration of the system, y
x, y is the configu-

ration obtained from y by exchanging the content of the sites x and y, and
yx is the configuration obtained from y by changing the content of the xth
site.
In the following formulas, |VT is a vector in an (as yet) unspecified

linear space equipped with an inner product, D and E linear operators on
the same space, SW| is an element of the dual space. So SW| A |VT is the
inner product generally written as (W, AV).
The formula of Derrida et al. to write the probability of a given con-

figuration in the stationary state of the ASEP is (1)

PN(y1,..., yN)=
1
ZN

SW| D
N

j=1
[yjD+(1−yj) E] |VT, (2)

where D, E, |VT, SW| are matrices and vectors that satisfy

(bD−dE) |VT=|VT,

pDE−qED=D+E,

SW| (aE− cD)=SW|

(3)

and ZN is a normalization factor.
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One can check these formulas provide a sufficient condition for the
measure to be stationary by observing they satisfy the recursion relations
for the probabilities (first due to Liggett (11)) that relate the probabilities for
the system with K sites to the ones for the system with K−1 sites. (1)

2. FROM THE GENERATOR TO MATRIX PRODUCT STATES

Let us start by re-writing the generator by making use of a formalism
borrowed from quantum mechanics. For all j=1,..., N let us define the
Hilbert space Hj :=span{|0Pj, |1Pj} 5 C2. Consider the operators a+, a−,
n, m defined by: a+ |0P=|1P, a− |0P=0, n |0P=0, m=I−n, a+ |1P=0,
a− |1P=|0P, n |1P=|1P, where I is the identity. Interpreting |0P and |1P as
empty site and occupied site respectively, the role of a+, a−, n as creation,
annihilation, number operators respectively is rather obvious. The most
immediate choice of an explicit expression for the operators and vectors
above is |0P=(01), |1P=(

1
0) a

+=(0 10 0), n=(
1 0
0 0), a

−=(0 01 0), m=(
0 0
0 1). Now we

take the tensor product HN=êN
j=1 Hj to describe the system on all the N

sites.
If we consider for example the ASEP, in this ‘‘quantum hamiltonian’’

formalism (14) the generator is given by

H=−C
k
p(a−k a

+
k+1−nkmk+1)+q(a

+
k a
−
k+1−mknk+1)

+c(a−1 −n1)+a(a
+
1 −m1)+b(a

−
N−nN)+d(a

+
N−mN)

=h“1+C
k
hk+h

“

N, (4)

where the superscript “ denotes a boundary term and

h“1=R
c −a
− c a
S , hk=R

0 0 0 0
0 p −q 0
0 −p q 0
0 0 0 0

S , h“N=R
b −d
−b d
S .

For any given operator or vector b in the space Hk we use the notation
bk — I é · · · é I é b é I · · · é I with b as kth factor. Using a different h.,
this formulation can be used for any process (like the voter and contact,
e.g.) such that the occupation number of each site is either 0 or 1, and such
that the dynamics involves a couple of neighboring sites at a time (slight
generalizations can be treated as well (7, 8)). The generator in (4) is the same
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as in (1) as can be checked by computing the Dirichlet Form for both and
verifying that they coincide (the same holds for processes with different h).
It is however easier to look closely at each part and see what it does. For
instance a+a− represents a jump to the right and nm takes into account the
complementary event (the particle stays where it is).
We now look for a stationary solution of the master equation

|P(t)P
·
=H |P(t)P (5)

which describes the dynamics of the system by giving the time evolution of
the vector of probabilities of configurations, i.e., we look for a distribution
|PsP such that H |PsP=0.
In order to show where the general idea can be guessed from, let us

consider again the case of the ASEP, to show (7) that under special condi-
tions (namely (a+b+c+d)(ab− cd)/(a+d)(b+c)=p−q) the stationary
state is a product state: |PsP=

1
ZN
(de)

éN (where d=(a+d)/(ab− cd), e=
(b+c)/(ab− cd) and the normalization constant is clearly ZN=(e+d)N).
To prove that H |PsP=0, one should first check

hi 51
d
e
2 é 1d

e
26=1d

e
2 é 1 −1

1
2−1 −1

1
2 é 1d

e
2 . (6)

This makes the sum through which H is defined telescopic (recall that we
are omitting the factors of the tensor product on which the operators act
trivially as the identity), and since

h“1 1
d
e
2=1 −1

1
2 , h“N 1

d
e
2=−1 −1

1
2 ,

the cancellation of the first term with the last is assured by the boundary
terms.
In other words, H |PsP=0 would be solved for instance if we had zero

for all i in the r.h.s. of (6); but this is too restrictive, so we look for the first
non trivial possibility: instead of zero, we impose a ‘‘telescopic term.’’ This
is inspired by the dynamics, that acts with the same h. on all couple of
adjacent sites, so the generator acts twice on each site. We will now try to
make the above approach work for non-product states by imposing a
similar telescopic property. The idea is to move into a richer context, sub-
stituting the numbers 1, e, d appearing in (6) with some time-dependent
operators (non commuting and acting on an auxiliary space of generally
infinite dimension) S, E, D to be determined, aiming to get the weights of
each possible configuration through a bracket with a couple of vectors
SW| and |VT to be introduced in the same space. For instance for a system
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consisting of a single site we would impose SW| (DE) |VT=(
SW| D |VT
SW| E |VT)=(

d
e)

and clearly, in the case of a product measure, SW| (DE)
éN |VT=(de)

éN. We
can also write HSW| (DE )

éN |VT=SW| H(DE)
éN |VT.

Let us now write |PP= 1
ZN

SW| (DE)
éN |VT for the probability vector

and plug it into the master equation (5). Clearly ZN=SW| CN |VT, with
C=D+E, that does not depends on time by conservation of probability.
It is easy to show that the master equation (5) is satisfied if the follow-

ing equalities hold (thanks to the same telescopic cancellation mechanism
we used for the product state)

11
2
d
dt.
+h. 21DE
2 é 1D

E
2=1D

E
2 é 1 −S

S
2−1 −S

S
2 é 1D

E
2 ,

SW| 511
2
d
dt
+h“1 21

D
E
2−1 −S

S
26=0,

511
2
d
dt
+h“L 21

D
E
2+1 −S

S
26 |VT=0.

(7)

These are the relations of the matrix algebra of the process. If we choose for
example the h. of the ASEP, these equations take the explicit form of the
algebra found by Stinchcombe and Schütz (12, 13) that includes as a special
case the stationary one (3) of Derrida et al. (taking S=I and putting all the
time derivatives equal to zero). With this procedure we can exhibit an
algebra for all the models with a dynamics involving only a couple of
neighboring sites at a time (14, 15) (see the same works for a classification of
the models with different h.). If one found an explicit expression for all the
operators and vectors, the model could in principle be solved exactly
(provided the algebra is not empty). Unfortunately, this is in general very
difficult to accomplish (a purely algebraic treatment can also be used (16)).
In the case of the ASEP, thanks to the preservation of the number of par-
ticles in the bulk dynamics, the local generator h. has a block form, with
zero entries in the first and last row and column. This special form of h. is
such that in stationary conditions the four equations (7) collapse to just
one: (3). But this great simplification may not occur for different models.
In many cases the algebra can be empty (or too complicated to deal with),
as we are going to show for the contact and voter models. We can say that
the method works for the processes, such as the ASEP, the probability
measures of which are either product, or a generalization that we can clas-
sify as ‘‘matrix product measures.’’ If one distinguished only between
product and non-product states, the choice would be in general only
between a numerical tensor product and a convex combination of as many
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such products as the cardinality of the configuration space. If the states of
a process are matrix product, one can chose to deal again with a single
tensor product, thanks to the richer nature of the entries, matrices instead
of numbers.
Algebras defined by conditions like (7) are called Diffusion Algebras. (9)

3. THE MATRIX APPROACH BEYOND SIMPLE EXCLUSION

3.1. Exclusion Process with Double Jumps

The method to write the matrix algebra of the process can also be
extended to the case of dynamics not limited to neighboring sites, such as
for instance the exclusion process with jumps of length two permitted. The
generator, in the case of symmetric dynamics, is (up to boundary terms):

H=−C
k
(a−k a

+
k+1−nkmk+1)+(a

+
k a
−
k+1−mknk+1)

+(a−k a
+
k+2−nkmk+2)+(a

+
k a
−
k+2−mknk+2)=C

k
hk,

h.=R
0 0 0 0 0 0 0 0
0 1 0 0 −1 0 0 0
0 0 1 0 −1 0 0 0
0 0 0 2 0 −1 −1 0
0 −1 −1 0 2 0 0 0
0 0 0 −1 0 1 0 0
0 0 0 −1 0 0 1 0
0 0 0 0 0 0 0 0

S .
For this system we impose the telescopic property to solve the master
equation in the following way:

11
3
d
dt.
+h. 21DE
2 é 1D

E
2 é 1D

E
2

=1D
E
2 é 1 −S

S
2 é 1D

E
2−2 1 −S

S
2 é 1D

E
2 é 1D

E
2

+1D
E
2 é 1D

E
2 é 1 −S

S
2
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which is the same as

1
3(2ḊD

2+DḊD+D2Ḋ)+0=−DSD+2SD2−D2S

1
3(2ḊDE+DḊE+D

2Ė)+D2E−ED2=−DSE+2SDE+D2S

1
3(2ḊED+DĖD+DEḊ)+DED−ED

2=DSD+2SED−DES

1
3 (2ḊE

2+DĖE+DEĖ)+2DE2−EDE−E2D=DSE+2SE2+DES

1
3(2ĖD

2+EḊD+EDḊ)−D2E−DED+2ED2=−ESD−2SD2−EDS

1
3(2ĖDE+EḊE+EDĖ)−DE

2−EDE=−ESE−2SDE+EDS

1
3(2ĖED+EĖD+E

2Ḋ)−DE2+E2D=ESD−2SED−E2S

1
3(2ĖE

2+EĖE+E2Ė)−0=ESE−2SE2+E2S

These relations define now a cubic algebra, as opposed to a quadratic one,
which is therefore not a Diffusion Algebra in the sense of ref. 9. Unfortu-
nately algebras of degree higher than two are very difficult to handle (see,
e.g., Vershik (17)). However algebras of degree higher than two appear, e.g.,
in ref. 16.

3.2. Voter and Contact Models

For a description of the voter and contact models see Liggett. (10) It is
easy to see that the local generator for the voter model can be written in
the form of the r.h.s. of (4) with

h.=R
0 −1 −1 0
0 2 0 0
0 0 2 0
0 −1 −1 0

S

and

h1=R
0 −l
0 l
S , hN=R

m 0
−m 0
S
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where l and m are the rates for opinion changing in the boundary sites.
Notice that there are non zero entries in the first and last row. It is easy to
compute that

h.1DE
2 é 1D

E
2=R

−{D, E}
2DE
2ED
−{D, E}

S

and so we can conclude that the algebra and its stationary limit are given
by

1
2(ḊD+DḊ)−{D, E}=[S, D]0 {D, E}=0

1
2(ḊE+DĖ)+2DE=SE+DS0 2DE=C

1
2(ĖD+EḊ)+2ED=−(SD+ES)0 2ED=−C

1
2(ĖE+EĖ)−{D, E}=[E, S]0 {D, E}=0.

Hence in stationary conditions

[D, E]=C — D+E, {D, E}=0, mD |VP=|VP, OW| lE=OW|.

Notice that the relations are similar to the ones of the ASEP, but there is
an additional condition: D and E anticommute.
The local generator of the contact model is

h.=R
0 −a −a 0
0 a+b 0 −a
0 0 a+b −a
0 −b −b 2a

S

so that

h 1D
E
2 é 1D

E
2=R

−a{D, E}
(a+b) DE−aE2

(a+b) ED−aE2

−b{D, E}+2aE2

S
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and so we can conclude that the algebra is given by

1
2(ḊD+DḊ)−a{D, E}=[S, D]

1
2(ḊE+DĖ)+(a+b) DE−aE

2=SE+DS
1
2(ĖD+EḊ)+(a+b) ED−aE

2=−(SD+ES)
1
2(ĖE+EĖ)−b{D, E}+2aE

2=[E, S]

so that in stationary conditions E2=0, [D, E]=C, {D, E}=0 if we
assume a=b=1.
Clearly these relations define a subalgebra of the one for the voter

model.

Theorem 3.1. In stationary conditions, the algebra of the voter
model is empty (and a fortiori so is the one of the contact process and so
are the ones for the whole time evolution).

Proof. The algebra is

DE=(D+E)/2, ED=−(D+E)/2,

DE=−ED, D |VP=m |VP, OW| E=OW| l.

If

J.=D, E

we get, from the first two conditions

OW| D
N

k=1
Jk |VP=OW| [P(D)+Q(E)] |VP=[P(1/m)+Q(1/l)]OW |VP

with some polynomials P and Q; but the third condition (anticommuta-
tion) also implies

OW| D
N

k=1
Jk |VP=(±)OW| EmDn |VP=(±)(1/l)m (1/m)n OW |VP

where m+n=N. The two expressions cannot be equal for all values of l
and m. L

This shows that, following the recipe of Section 2, we cannot use the
matrix approach. However, the l.h.s of (7) reflects directly the dynamics of
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the process and does not depend on the matrix formalism, but the telesco-
pic r.h.s. is only inspired by the nearest neighbor nature of the dynamics
and it is more ‘‘artificial.’’ In other words, if another way to solve the
master equation were developed, some kind of matrix approach could still
be productive also for those models that cannot be treated with the current
matrix approach illustrated in this paper.
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